Muscle sensory neurons require neurotrophin-3 from peripheral tissues during the period of normal cell death.

نویسندگان

  • R A Oakley
  • A S Garner
  • T H Large
  • E Frank
چکیده

To determine if muscle sensory neurons require neurotrophin-3 (NT3) during the period of normal cell death, we used an NT3-specific antiserum to deplete NT3 from peripheral tissues during this period in chick embryos. DiI staining of dorsal roots indicated that limb injections of anti-NT3 reduced the spinal projection of muscle spindle afferents. In contrast, injection of the antiserum into the spinal cord had no demonstrable effect, indicating that the reduced projection following limb injection was due to peripheral blockade of NT3 signaling. Counts of neurons retrogradely labeled from muscle and cutaneous nerves showed that peripheral blockade of NT3 selectively reduced the survival of muscle sensory neurons without affecting the survival of cutaneous sensory neurons or motoneurons. In situ hybridization with trkC probes indicated that, during the period of cell death, most large diameter muscle sensory neurons express trkC transcripts, whereas few cutaneous neurons express this receptor for NT3. We conclude that large diameter muscle afferents, including spindle afferents, require NT3 from peripheral tissues to survive the normal period of sensory neuron death in vivo.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Morphological Identification of Cell Death in Dorsal Root Ganglion Neurons Following Peripheral Nerve injury and repair in adult rat

Background: Axotomy causes sensory neuronal loss. Reconnection of proximal and distal nerve ends by surgical repair improves neuronal survival. It is important to know the morphology of primary sensory neurons after the surgical repair of their peripheral processes. Methods: Animals (male Wistar rats) were exposed to models of sciatic nerve transection, direct epineurial suture repair of sciati...

متن کامل

Targeted expression of a multifunctional chimeric neurotrophin in the lesioned sciatic nerve accelerates regeneration of sensory and motor axons (nerve growth factorybrain-derived neurotrophic factorynerve regenerationysite-directed mutagenesisytransgenic mice)

Peripheral nerve injury markedly regulates expression of neurotrophins and their receptors in the lesioned nerve. However, the role of endogenously produced neurotrophins in the process of nerve regeneration is unclear. Expression of a multifunctional neurotrophin, panneurotrophin-1 (PNT-1), was targeted to the peripheral nerves of transgenic mice by using a gene promoter that is specifically a...

متن کامل

Brain-derived neurotrophic factor, neurotrophin-3, and neurotrophin-4 complement and cooperate with each other sequentially during visceral neuron development.

The neurotrophins nerve growth factor (NGF), brain-derived neurotrophic factor (BDNF), neurotrophin-3 (NT3), and neurotrophin-4 (NT4) are crucial target-derived factors controlling the survival of peripheral sensory neurons during the embryonic period of programmed cell death. Recently, NT3 has also been found to act in a local manner on somatic sensory precursor cells during early development ...

متن کامل

A Local Action of Neurotrophin-3 Prevents the Death of Proliferating Sensory Neuron Precursor Cells

The role of neurotrophin-3 (NT-3) in early development of the dorsal root ganglion was investigated. Excessive cell death in the dorsal root ganglion of mice that carry a deleted NT-3 gene (NT-3-/- mice) preceded the period of programmed cell death, detected by the TUNEL method, and caused a reduction in the number of proliferating precursors without altering the proportion of proliferating cel...

متن کامل

Brain-derived neurotrophic factor and glial cell line-derived neurotrophic factor are required simultaneously for survival of dopaminergic primary sensory neurons in vivo.

Null mutations affecting members of the transforming growth factor-beta and neurotrophin families result in overlapping patterns of neuronal cell death. This is particularly striking in the cranial sensory nodose-petrosal ganglion complex (NPG), in which loss of either glial cell line-derived neurotrophic factor (GDNF), brain-derived neurotrophic factor (BDNF), neurotrophin-3 (NT-3), or neurotr...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Development

دوره 121 5  شماره 

صفحات  -

تاریخ انتشار 1995